Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications
نویسندگان
چکیده
Current land surface schemes used for mesoscale weather forecast models use the Jarvis-type stomatal resistance formulations for representing the vegetation transpiration processes. The Jarvis scheme, however, despite its robustness, needs significant tuning of the hypothetical minimum-stomatal resistance term to simulate surface energy balances. In this study, the authors show that the Jarvis-type stomatal resistance/transpiration model can be efficiently replaced in a coupled land–atmosphere model with a photosynthesis-based scheme and still achieve dynamically consistent results. To demonstrate this transformative potential, the authors developed and coupled a photosynthesis, gas exchange–based surface evapotranspiration model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM was dynamically coupled with a prognostic soil moisture–soil temperature model and an atmospheric boundary layer (ABL) model. This coupled system was then validated over different natural surfaces including temperate C4 vegetation (prairie grass and corn field) and C3 vegetation (soybean, fallow, and hardwood forest) under contrasting surface conditions (such as different soil moisture and leaf area index). Results indicated that the coupled model was able to realistically simulate the surface fluxes and the boundary layer characteristics over different landscapes. The surface energy fluxes, particularly for latent heat, are typically within 10%–20% of the observations without any tuning of the biophysical–vegetation characteristics, and the response to the changes in the surface characteristics is consistent with observations and theory. This result shows that photosynthesis-based transpiration/stomatal resistance models such as GEM, despite various complexities, can be applied for mesoscale weather forecasting applications. Future efforts for understanding the different scaling parameterizations and for correcting errors for low soil moisture and/or wilting vegetation conditions are necessary to improve model performance. Results from this study suggest that the GEM approach using the photosynthesis-based soil vegetation atmosphere transfer (SVAT) scheme is thus superior to the Jarvis-based approaches. Currently GEM is being implemented within the Noah land surface model for the community Weather Research and Forecasting (WRF) Advanced Research Version Modeling System (ARW) and the NCAR high-resolution land data assimilation system (HRLDAS), and validation is under way. * The National Center for Atmospheric Research is sponsored by the National Science Foundation. Corresponding author address: Dr. Dev Niyogi, Department of Agronomy, and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907. E-mail: [email protected] FEBRUARY 2009 N I Y O G I E T A L . 349 DOI: 10.1175/2008JAMC1662.1 2009 American Meteorological Society
منابع مشابه
Effect of Land–Atmosphere Interactions on the IHOP 24–25 May 2002 Convection Case
Numerical simulations are conducted using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to investigate the impact of land–vegetation processes on the prediction of mesoscale convection observed on 24–25 May 2002 during the International H2O Project (IHOP_2002). The control COAMPS configuration uses the Weather Research and Forecasting (WRF) model version of the Noah land sur...
متن کاملEvaluation of a Photosynthesis-Based Canopy Resistance Formulation in the Noah Land-Surface Model
Accurately representing complex land-surface processes balancing complexity and realism remains one challenge that the weather modelling community is facing nowadays. In this study, a photosynthesis-based Gas-exchange Evapotranspiration Model (GEM) is integrated into the Noah land-surface model replacing the traditional Jarvis scheme for estimating the canopy resistance and transpiration. Using...
متن کاملEvaluation and improvements of two community models in simulating dry deposition velocities for peroxyacetyl nitrate (PAN) over a coniferous forest
[1] Dry deposition velocities (Vd) for peroxyacetyl nitrate (PAN) calculated using two community dry deposition models with different treatments of both stomatal and nonstomatal uptakes were evaluated using measurements of PAN eddy covariance fluxes over a Loblolly pine forest in July 2003. The observed daytime maximum of Vd(PAN) was 1.0 cm s 1 on average, while the estimates by the WRF-Chem dr...
متن کاملNumerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions
The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormo...
متن کاملCoupled weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model
This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top– down estimates of terrestrial...
متن کامل